
2025

Author: Alena Rybakina

Switching Between Query Plans in Real Time
(Switch Join)

1

Switch Join Can Give Significant Improvement

2

About Me

● Core developer in Postgres Professional since 2021

● Contributing to the PostgreSQL project since 2023

○ OR to ANY transformation

○ Values to ANY transformation

○ Others

● Participated in extension development:

○ AQO

○ Replaning

OUTLINE OF THE REPORT
3

https://github.com/postgres/postgres/commit/d4378c0005e61b1bb78e88097ea6efcdddbe2d6e
https://github.com/postgres/postgres/commit/d48d2e2dc8be50d3ca13305b5699384329b15433
https://github.com/postgrespro/aqo
https://postgrespro.com/docs/enterprise/16/realtime-query-replanning

1. The Reasons for Switch Join

2. Switch Join

3. Extension Implementation

4. Benchmarks

5. Conclusion and development

Outline of The Report

OUTLINE OF THE REPORT ABOUT INITIAL ISSUES
4

2025

1. The Reasons for Switch Join

5

Planner and Optimizer Imperfections
● Cardinality under- or over-estimations
● Cost estimation mistakes
● Use of SubPlans instead of joins
● Inefficient Sort/Group strategy
Common Bottlenecks
● Redundant algorithm cycles
● High data volume without filtering
Other planner and executor issues…

 Why Are My Queries So Slow

ABOUT SWITCH JOINABOUT INITIAL ISSUES
6

 The Main Problem

ABOUT SWITCH JOINABOUT INITIAL ISSUES
7

Query Planning Gone Wrong
Robert Haas

How good are query optimizers, really?
V.Levis, A.Gubichev, A.Mirchev,

P.Boncz,
A.Kemper and T.Neumann

Adaptive Cardilnality Estimation
O.Ivanov, S.Bartunov,

Arxiv, Nov.2017

A generalized join algorithm
Goetz Graefe

Hewlett-Packard Laboratories

The wrong cardinality estimation leads to the choice a suboptimal algorithm

https://drive.google.com/file/d/1JrPh4KsRwZiAO1WvOAAvxLgN9E4qrx9O/view
https://drive.google.com/file/d/1JrPh4KsRwZiAO1WvOAAvxLgN9E4qrx9O/view
https://vldb.org/pvldb/vol9/p204-leis.pdf
https://vldb.org/pvldb/vol9/p204-leis.pdf
https://vldb.org/pvldb/vol9/p204-leis.pdf
https://vldb.org/pvldb/vol9/p204-leis.pdf
https://arxiv.org/pdf/1711.08330
https://arxiv.org/pdf/1711.08330
https://arxiv.org/pdf/1711.08330
https://subs.emis.de/LNI/Proceedings/Proceedings180/267.pdf
https://subs.emis.de/LNI/Proceedings/Proceedings180/267.pdf
https://subs.emis.de/LNI/Proceedings/Proceedings180/267.pdf

● What Can We Optimize

○ Group By

○ Skip Scan

○ Self-Join

○ Pull-Up

○ Others

● What Can We use

○ Extended Stats

Some Optimizations To Simplify The Problem

ABOUT SWITCH JOINABOUT INITIAL ISSUES
8

 Some More Solutions

ABOUT SWITCH JOINABOUT INITIAL ISSUES
9

These solutions store the actual cardinality and allow the optimizer to use it during query
plan generation

A generalized join algorithm
Goetz Graefe

Hewlett-Packard Laboratories

Adaptive Join
SQL Server 2017

Postgres query re-optimisation
Lepikhov Andrei, Belyalov Damir,

Rybakina Alena
Postgres Professional Nov. 2023

Adaptive Query Optimization
Postgres Professional

https://subs.emis.de/LNI/Proceedings/Proceedings180/267.pdf
https://subs.emis.de/LNI/Proceedings/Proceedings180/267.pdf
https://subs.emis.de/LNI/Proceedings/Proceedings180/267.pdf
https://sql-ex.ru/blogs/?/Adaptivnye_soedineniJa_v_SQL_Server.html
https://danolivo.substack.com/p/postgres-query-re-optimisation-in
https://danolivo.substack.com/p/postgres-query-re-optimisation-in
https://danolivo.substack.com/p/postgres-query-re-optimisation-in
https://danolivo.substack.com/p/postgres-query-re-optimisation-in
https://www.pgevents.ca/events/pgconfdev2024/schedule/session/147-adaptive-query-optimization-in-postgresql/

 Some More Solutions

ABOUT SWITCH JOINABOUT INITIAL ISSUES
10

They combine multiple join strategies and dynamically choose the most efficient one
based on runtime information.

A generalized join algorithm
Goetz Graefe

Hewlett-Packard Laboratories

Adaptive Join
SQL Server 2017

Adaptive Query Optimization
Postgres Professional

Postgres query re-optimisation
Lepikhov Andrei, Belyalov Damir,

Rybakina Alena
Postgres Professional Nov. 2023

https://subs.emis.de/LNI/Proceedings/Proceedings180/267.pdf
https://subs.emis.de/LNI/Proceedings/Proceedings180/267.pdf
https://subs.emis.de/LNI/Proceedings/Proceedings180/267.pdf
https://sql-ex.ru/blogs/?/Adaptivnye_soedineniJa_v_SQL_Server.html
https://www.pgevents.ca/events/pgconfdev2024/schedule/session/147-adaptive-query-optimization-in-postgresql/
https://danolivo.substack.com/p/postgres-query-re-optimisation-in
https://danolivo.substack.com/p/postgres-query-re-optimisation-in
https://danolivo.substack.com/p/postgres-query-re-optimisation-in
https://danolivo.substack.com/p/postgres-query-re-optimisation-in

INSERT INTO a SELECT gs AS x, gs%5 y FROM generate_series(1,1E2) AS gs;

INSERT INTO b SELECT gs AS x, gs%8 y FROM generate_series(1,1E2) AS gs;

VACUUM ANALYZE a,b;

INSERT INTO a SELECT gs%8, 6 AS y FROM generate_series(1,1E4) AS gs;

INSERT INTO b SELECT 6 AS y FROM generate_series(1,1E3) AS gs;

EXPLAIN SELECT count(*) FROM a join b on a.x=b.x and a.y=6;

Table "public.a"

 Column | Type

 x | numeric

 y | numeric

Indexes: "a_y_idx" btree (y)

A Problem Scenario

ABOUT SWITCH JOINABOUT INITIAL ISSUES
11

Table "public.b"

 Column | Type

 x | numeric

 y | numeric

Table names Table "public.a" Table "public.b"

Schema

 x: numeric

 y: numeric

Indexes: "a_y_idx" btree (y)

 x: numeric

 y: numeric

Initial Data
Population

Inserts 100 rows
x: values from 1 to 100

y: repeats values from 0 to 4

Also 100 rows
x: values from 1 to 100

y: repeats values from 0 to 7

Updates

statistics
VACUUM ANALYZE a,b;

Additional Data
Inserts 10,000 rows

x: repeats values from 1 to 7
y: 6 (fixed)

Also 10,000 rows
x: 6 (fixed)

y: values from 1 to 10,000

INSERT INTO a SELECT gs AS x, gs%5 y FROM generate_series(1,1E2) AS gs;

INSERT INTO b SELECT gs AS x, gs%8 y FROM generate_series(1,1E2) AS gs;

VACUUM ANALYZE a,b;

INSERT INTO a SELECT gs%8, 6 AS y FROM generate_series(1,1E4) AS gs;

INSERT INTO b SELECT 6 AS y FROM generate_series(1,1E3) AS gs;

EXPLAIN SELECT count(*) FROM a join b on a.x=b.x and a.y=6;

Table "public.a"

 Column | Type

 x | numeric

 y | numeric

Indexes: "a_y_idx" btree (y)

A Problem Scenario

ABOUT SWITCH JOINABOUT INITIAL ISSUES
12

Table "public.b"

 Column | Type

 x | numeric

 y | numeric

Table names Table "public.a" Table "public.b"

Schema

 x: numeric

 y: numeric

Indexes: "a_y_idx" btree (y)

 x: numeric

 y: numeric

Initial Data
Population

Inserts 100 rows
x: values from 1 to 100

y: repeats values from 0 to 4

Also 100 rows
x: values from 1 to 100

y: repeats values from 0 to 7

Updates

statistics
VACUUM ANALYZE a,b;

Additional Data
Inserts 10,000 rows

x: repeats values from 1 to 7
y: 6 (fixed)

Also 10,000 rows
x: 6 (fixed)

y: values from 1 to 10,000

INSERT INTO a SELECT gs AS x, gs%5 y FROM generate_series(1,1E2) AS gs;

INSERT INTO b SELECT gs AS x, gs%8 y FROM generate_series(1,1E2) AS gs;

VACUUM ANALYZE a,b;

INSERT INTO a SELECT gs%8, 6 AS y FROM generate_series(1,1E4) AS gs;

INSERT INTO b SELECT 6 AS y FROM generate_series(1,1E3) AS gs;

EXPLAIN SELECT count(*) FROM a join b on a.x=b.x and a.y=6;

Table "public.a"

 Column | Type

 x | numeric

 y | numeric

Indexes: "a_y_idx" btree (y)

A Problem Scenario

ABOUT SWITCH JOINABOUT INITIAL ISSUES
13

Table "public.b"

 Column | Type

 x | numeric

 y | numeric

Table names Table "public.a" Table "public.b"

Schema

 x: numeric

 y: numeric

Indexes: "a_y_idx" btree (y)

 x: numeric

 y: numeric

Initial Data
Population

Inserts 100 rows
x: values from 1 to 100

y: repeats values from 0 to 4

Also 100 rows
x: values from 1 to 100

y: repeats values from 0 to 7

Updates

statistics
VACUUM ANALYZE a,b;

Additional Data
Inserts 10,000 rows

x: repeats values from 1 to 7
y: 6 (fixed)

Also 10,000 rows
x: 6 (fixed)

y: values from 1 to 10,000

INSERT INTO a SELECT gs AS x, gs%5 y FROM generate_series(1,1E2) AS gs;

INSERT INTO b SELECT gs AS x, gs%8 y FROM generate_series(1,1E2) AS gs;

VACUUM ANALYZE a,b;

INSERT INTO a SELECT gs%8, 6 AS y FROM generate_series(1,1E4) AS gs;

INSERT INTO b SELECT 6 AS y FROM generate_series(1,1E3) AS gs;

EXPLAIN SELECT count(*) FROM a join b on a.x=b.x and a.y=6;

Table "public.a"

 Column | Type

 x | numeric

 y | numeric

Indexes: "a_y_idx" btree (y)

A Problem Scenario

ABOUT SWITCH JOINABOUT INITIAL ISSUES
14

Table "public.b"

 Column | Type

 x | numeric

 y | numeric

Table names Table "public.a" Table "public.b"

Schema

 x: numeric

 y: numeric

Indexes: "a_y_idx" btree (y)

 x: numeric

 y: numeric

Initial Data
Population

Inserts 100 rows
x: values from 1 to 100

y: repeats values from 0 to 4

Also 100 rows
x: values from 1 to 100

y: repeats values from 0 to 7

Updates

statistics
VACUUM ANALYZE a,b;

Additional Data
Inserts 10,000 rows

x: repeats values from 1 to 7
y: 6 (fixed)

Also 10,000 rows
x: 6 (fixed)

y: values from 1 to 10,000

INSERT INTO a SELECT gs AS x, gs%5 y FROM generate_series(1,1E2) AS gs;

INSERT INTO b SELECT gs AS x, gs%8 y FROM generate_series(1,1E2) AS gs;

VACUUM ANALYZE a,b;

INSERT INTO a SELECT gs%8, 6 AS y FROM generate_series(1,1E4) AS gs;

INSERT INTO b SELECT 6 AS y FROM generate_series(1,1E3) AS gs;

EXPLAIN SELECT count(*) FROM a join b on a.x=b.x and a.y=6;

Table "public.a"

 Column | Type

 x | numeric

 y | numeric

Indexes: "a_y_idx" btree (y)

A Problem Scenario

ABOUT SWITCH JOINABOUT INITIAL ISSUES
15

Table "public.b"

 Column | Type

 x | numeric

 y | numeric

Table names Table "public.a" Table "public.b"

Schema

 x: numeric

 y: numeric

Indexes: "a_y_idx" btree (y)

 x: numeric

 y: numeric

Initial Data
Population

Inserts 100 rows
x: values from 1 to 100

y: repeats values from 0 to 4

Also 100 rows
x: values from 1 to 100

y: repeats values from 0 to 7

Updates

statistics
VACUUM ANALYZE a,b;

Additional Data
Inserts 10,000 rows

x: repeats values from 1 to 7
y: 6 (fixed)

Also 10,000 rows
x: 6 (fixed)

y: values from 1 to 10,000

An Initial Problem: The Query Plan Without Switch Join

ABOUT SWITCH JOINABOUT INITIAL ISSUES
16

 -> Nested Loop (rows=1) (actual rows=12508750.00)

 -> Index Scan using a_y_idx on a (rows=1) (actual rows=10000.00)

 Index Cond: (y = '6'::numeric)

 Index Searches: 1

 -> Index Only Scan using b_x_idx on b (rows=1) (actual rows=1250.88)

 Index Cond: (x = a.x)

 Heap Fetches: 12508750

 Index Searches: 10000

This query: EXPLAIN SELECT count(*) FROM a join b on a.x=b.x and a.y=6;

● Joins on a.x = b.x
● Filters a.y = 6 (a value heavily inserted but not evenly distributed)

An Initial Problem: The Query Plan With Switch Join

ABOUT SWITCH JOINABOUT INITIAL ISSUES
17

Without Switch Join With Switch Join

Time Planning Time: 0.231 ms
Execution Time: 6814.181 ms

EXPLAIN SELECT count(*) FROM a join b on a.x=b.x and a.y=6;

An Initial Problem: The Query Plan With Switch Join

ABOUT SWITCH JOINABOUT INITIAL ISSUES
18

 -> Custom Scan (SwitchJoin) (rows=1 width=0) (actual rows=12508750.00)

 --> Limit cardinality: 100

 -> Nested Loop (rows=1) (never executed)

 -> Materialize (rows=1) (actual rows=5050.50)

 -> Index Scan using a_y_idx on a (rows=1) (actual rows=5050.50)

 Index Cond: (y = '6'::numeric) Index Searches: 2

 -> Index Only Scan using b_x_idx on b (rows=1) (never executed)

 Index Cond: (x = a.x) Index Searches: 0

 -> Hash Join (rows=1) (actual rows=12508750.00)

 Hash Cond: (b.x = a.x)

 -> Seq Scan on b (rows=4500) (actual rows=10100.00)

 -> Hash (rows=1) (actual rows=10000.00)

 -> Materialize (rows=1) (actual rows=5050.50)

 -> Index Scan using a_y_idx on a (rows=1) (actual rows=5050.50)

 Index Cond: (y = '6'::numeric) Index Searches: 2

An Initial Problem: The Query Plan With Switch Join

ABOUT SWITCH JOINABOUT INITIAL ISSUES
19

Without Switch Join With Switch Join

The Query EXPLAIN SELECT count(*) FROM a join b on a.x=b.x and a.y=6;

Time Planning Time: 0.231 ms
Execution Time: 6814.181 ms

Planning Time: 0.259 ms
Execution Time: 1240.181 ms

Without Switch Join With Switch Join

Time Planning Time: 0.231 ms
Execution Time: 6814.181 ms

Planning Time: 0.259 ms
Execution Time: 1240.181 ms

EXPLAIN SELECT count(*) FROM a join b on a.x=b.x and a.y=6;

2025

2. Switch Join

20

● It is an extension of PostgreSQL

● It saves two plans that are generated by the optimizer:

○ As-Is — assumes the optimizer’s prediction is correct

○ Pessimistic — assumes the optimizer underestimates cardinality

● The query engine chooses between these plans only after observation of the

actual cardinality at the switching point during runtime.

Switch Join

ABOUT SWITCH JOIN EXTENSION IMPLEMENTATION
21

Relation CRelation B

Hash

Nested Loop

Switch Join

Hash Join

Relation A

Materialize

Relation A

Materialize

The Switching Process

ABOUT SWITCH JOIN

Execute initial plan1.

EXTENSION IMPLEMENTATION
22

Hash

Nested Loop

Switch Join

Hash Join

MaterializeMaterialize

ABOUT SWITCH JOIN

Execute initial plan1.

Preserve results2.

The Switching Process

Relation CRelation B

Relation ARelation A

EXTENSION IMPLEMENTATION
23

Execute initial plan

Preserve results

Hash

Nested Loop

Switch Join

Hash Join

MaterializeMaterialize

Check row count: Is threshold exceeded?

ABOUT SWITCH JOIN

1.

2.

3.

The Switching Process

Relation CRelation B

Relation ARelation A

EXTENSION IMPLEMENTATION
24

Switch to Hash Join

Hash

Nested Loop

Switch Join

Hash Join

MaterializeMaterialize

ABOUT SWITCH JOIN

Execute initial plan

Preserve results

Check row count: Is threshold exceeded?

1.

2.

3.

4.

The Switching Process

Relation CRelation B

Relation ARelation A

EXTENSION IMPLEMENTATION
25

EXTENSION IMPLEMENTATION

Hash

Nested Loop

Switch Join

Hash Join

MaterializeMaterialize

ABOUT SWITCH JOIN

Switch to Hash Join

Execute initial plan

Preserve results

Check row count: Is threshold exceeded?

1.

2.

3.

4.

Rescanning relation5.

The Switching Process

Relation CRelation B

Relation ARelation A

26

There are two types of lanes:
● ✅ Manual Lane — free and fast, but only when the traffic

is light.
● ⚡ Express Lane — built for the heavy traffic, but comes

at a cost.
The elephant doesn’t have to choose the lane before he
sees the traffic.
A sensor counts how many cars are ahead of the elephant.

Switch Join Simplified

Imagine a mini elephant is driving on a highway approaching a toll plaza.

ABOUT SWITCH JOIN EXTENSION IMPLEMENTATION
27

The elephant is Switch Join.
The traffic sensor checks how many cars are ahead is the
observation process how many tuples in the outer node of
Nested Loop.
The mini elephant decides whether path should be more
optimal:

● ✅ Manual Lane — Uses a Nested Loop; efficient for the
light traffic.

● ⚡ Express Lane — Uses a Hash Join; adds overhead but
excels under heavy traffic.

Switch Join Simplified

ABOUT SWITCH JOIN EXTENSION IMPLEMENTATION
28

Switch Join Implementation
with NestLoop, HashJoin, and
MergeJoin

29

Behind The Scenes: Switch Join Mechanics

● Prepare for Nested Loop available the Hash or Merge Join node

● Prepare shared outer input to avoid recomputation

● Define a row count threshold to decide when to switch

● Estimate the costs for both plans

● Define the switching algorithm:

○ Start executing the probe input (the outer side)

○ If the row count exceeds a predetermined threshold, switches to Hash Join

○ The row count threshold is based on the internal cost-based heuristics

ABOUT SWITCH JOIN EXTENSION IMPLEMENTATION
30

Preparing The Appropriate Path

31

The same relation used as the outer input in the Nested Loop is also used in the
Hash Join.
Relation B and Relation C may differ, since Relation C is always recomputed.

Preparing The Appropriate Path

Relation A

Relation CRelation B

Relation A

Hash

Nested Loop Hash Join

ABOUT SWITCH JOIN EXTENSION IMPLEMENTATION
32

The same path as the outer of the Nested Loop

Preparing The Appropriate Path

Why is keeping the same outer path crucial?

○ Avoid Re-Execution or Duplication

○ Preserve Execution Semantics

ABOUT SWITCH JOIN EXTENSION IMPLEMENTATION
33

Sharing Outer Node’s Results

34

Relation CRelation B

Hash

Nested Loop

Switch Join

Hash Join

Relation ARelation A

Materialize

ABOUT SWITCH JOIN

Sharing Outer Node Via Materialization

EXTENSION IMPLEMENTATION
35

The same TupleStore
type

ABOUT SWITCH JOIN

Sharing Outer Node Via Materialization

Relation CRelation B

Hash

Nested Loop

Switch Join

Hash Join

Relation ARelation A

Materialize Materialize

EXTENSION IMPLEMENTATION
36

Rescanning

ABOUT SWITCH JOIN

Sharing Outer Node Via Materialization

The same TupleStore
type

Relation CRelation B

Hash

Nested Loop

Switch Join

Hash Join

Relation ARelation A

Materialize Materialize

EXTENSION IMPLEMENTATION
37

⚠ The following node types should NOT be used as outer input for

switching:

● Volatile Functions (e.g., random(), now())

● Set-Returning Functions (e.g. generate_series())

● CTEs with Side Effects (e.g., using nextval() or UPDATE)

● Cursor or Portal Usage

❗ Why it can’t be reused - it is not safe

the result might change between outer rows
ABOUT SWITCH JOIN

Sharing Outer Node Via Materialization

EXTENSION IMPLEMENTATION
38

Nested Loop Issues

39

√ Avoids Additional Sorts

Indexes return data in a specific order which is preserved in the pathkeys list.

The planner can reuse this ordering in later stages and skip the sort step (for example, before a Merge Join).

X Slower for large inputs

Even if the data is ordered, Nested Loop joins may not perform well with large volumes of data.

Nested Loop With Pathkeys

40

Group

 Group Key: b.x

 -> Nested Loop

 -> Index Only Scan using a_idx on a

 -> Index Only Scan using b_idx on b

 Index Cond: (x = a.x)

SELECT b.x FROM a join b on a.x=b.x group by (b.x);

b.x is a
PathKey!

Group

 Group Key: b.x

 -> Merge Join

 Merge Cond: (b.x = a.x)

 -> Materialize

 -> Index Only Scan using b_idx on b

 -> Index Only Scan using a_idx on a

Nested Loop With Pathkeys

41

Group

 Group Key: b.x

 -> Nested Loop

 -> Index Only Scan using a_idx on a

 -> Index Only Scan using b_idx on b

 Index Cond: (x = a.x)

SELECT b.x FROM a join b on a.x=b.x group by (b.x);

√ Avoids Additional Sorts

Indexes return data in a specific order which is preserved in the pathkeys list.

The planner can reuse this ordering in later stages and skip the sort step (for example, before a Merge Join).

X Slower for large inputs

Even if the data is ordered, Nested Loop joins may not perform well with large volumes of data.

b.x is a
PathKey!

Group

 Group Key: b.x

 -> Sort

 Sort Key: b.x

 -> Hash Join

 Hash Cond: (b.x = a.x)

 -> Index Only Scan using b_idx on b

 -> Hash

 -> Index Only Scan using a_idx on a

Nested Loop With Pathkeys

SELECT b.x FROM a join b on a.x=b.x group by (b.x);

b.x is a
PathKey!

Group

 Group Key: b.x

 -> Nested Loop

 -> Index Only Scan using a_idx on a

 -> Index Only Scan using b_idx on b

 Index Cond: (x = a.x)

√ Avoids Additional Sorts

Indexes return data in a specific order which is preserved in the pathkeys list.

The planner can reuse this ordering in later stages and skip the sort step (for example, before a Merge Join).

X Slower for large inputs

Even if the data is ordered, Nested Loop joins may not perform well with large volumes of data.

How Nested Loop Should Be Replaced By Switch Join
NL type Features Switch Join construction

with pathkeys √ Avoids Additional Sorts
X Slower for large volume of data

NestedLoop + {HashJoin+Sort}
NestedLoop + MergeJoin

parameterized

paralleled

tedious

ABOUT SWITCH JOIN EXTENSION IMPLEMENTATION
43

NL type Features Switch Join construction

with pathkeys √ Avoids Additional Sorts
X Slower for large volume of data

NestedLoop + {HashJoin+Sort}
NestedLoop + MergeJoin

parameterized

NestedLoop + HashJoinparalleled

tedious

ABOUT SWITCH JOIN

How Nested Loop Should Be Replaced By Switch Join

EXTENSION IMPLEMENTATION
44

√ Efficient Index Usage

The inner side is often an Index Scan, filtered by a parameter from the outer row.

⚠ Complexity In Planner Prediction

Since the inner side is re-evaluated for every outer row, the selectivity of parameterized lookups can vary

significantly depending on data distribution.

X Slower for Large Data Volumes

It can result in many repeated index lookups, which may degrade performance.

Parameterized Nested Loop

45

Nested Loop
 -> Index Scan using a_y_idx on a
 Index Cond: (y = '6'::numeric)
 -> Index Only Scan using b_x_y_idx on b
 Index Cond: (x = a.x)

 -> Hash Join
 Hash Cond: (b.x = a.x)
 -> Index Only Scan using b_x_y_idx on b
 -> Hash
 -> Index Scan using a_y_idx on a
 Index Cond: (y = '6'::numeric)

SELECT b.x FROM a join b on a.x=b.x group by (b.x);
HashJoin is not
parameterised!

It is filtered by
a.x parameter!

NL type Features Switch Join construction

with pathkeys √ Avoids Additional Sorts
X Slower for large volume of data

NestedLoop + {HashJoin+Sort}
NestedLoop + MergeJoin

parameterized
√ Reuse inner with parameters

⚠ Complexity of prediction the cardinality for Planner
X Slow with large outer rows

NestedLoop + HashJoinparalleled

tedious

ABOUT SWITCH JOIN

How Nested Loop Should Be Replaced By Switch Join

EXTENSION IMPLEMENTATION
46

√ Uses Parallel Scans

The outer side is parallel-aware (like a parallel sequential scan)

X Might Be Slower

If the planner assumes efficient indexed lookups but gets full scans instead, the cost of repeating that

scan per outer row grows fast.

Paralleled Nested Loop

47

SELECT b.x
FROM a

join b
on a.x=b.x

group by (b.x);

Finalize Aggregate

 -> Gather

 Workers Planned: 1

 -> Partial Aggregate

 -> Nested Loop

 -> Parallel Index Only Scan using bidx on b

 -> Memoize

 Cache Key: b.x

 -> Index Only Scan using a_idx on a

 Index Cond: (x = b.x)

NL type Features Switch Join construction

with pathkeys √ Avoids Additional Sorts
X Slower for large volume of data

NestedLoop + {HashJoin+Sort}
NestedLoop + MergeJoin

parameterized
√ Reuse inner with parameters

⚠ Complexity of prediction the cardinality for Planner
X Slow with large outer rows

NestedLoop + HashJoinparalleled √ Uses parallel scans
X Slower for large volume of data

tedious

ABOUT SWITCH JOIN

How Nested Loop Should Be Replaced By Switch Join

EXTENSION IMPLEMENTATION
48

NL type Features Switch Join construction

with pathkeys √ Avoids Additional Sorts
X Slower for large volume of data

NestedLoop + {HashJoin+Sort}
NestedLoop + MergeJoin

parameterized
√ Reuse inner with parameters

⚠ Complexity of prediction the cardinality for Planner
X Slow with large outer rows

NestedLoop + HashJoinparalleled √ Uses parallel scans
X Slower for large volume of data

tedious
√ Simplicity / Universality

√ No Preprocessing Overhead
X Quadratic complexity

ABOUT SWITCH JOIN

How Nested Loop Should Be Replaced By Switch Join

EXTENSION IMPLEMENTATION
49

NL type Nested Loop Switch Join

with pathkeys ⚠ Only if the TargetPath cost is too high ⚠ Only if the NL cost is too high

parameterized √ Always √ Always

paralleled ⚠ Only if the TargetPath cost is too high ⚠ Only if the NL cost is too high

tedious X Always √ Always

ABOUT SWITCH JOIN

What Should Be Used - Nested Loop Or Switch Join

EXTENSION IMPLEMENTATION
50

The Row Count Threshold

51

Row Count Threshold Strategies

● Fixed threshold

(e.g. switch if row count = 1000)

● Relative threshold

Multiply estimated rows by a trust coefficient

Example: threshold = estimated_rows * 2.5

● Advanced heuristics

Consider join type, data skew, or cost prediction

Evaluate The Row Count Threshold

ABOUT SWITCH JOIN EXTENSION IMPLEMENTATION
52

Row Count Threshold Strategies

● Fixed threshold

(e.g. switch if row count = 1000)

● Relative threshold

Multiply estimated rows by a trust coefficient

Example: threshold = estimated_rows * 2.5

● Advanced heuristics

Consider join type, data skew, or cost prediction

Evaluate The Row Count Threshold

ABOUT SWITCH JOIN EXTENSION IMPLEMENTATION
53

Gucs in Switch Join Extension

Gucs:

to determine the row count limit:
○ mistrust_factor - the coefficient to define the row count limit for switching process.

○ min_limit_cardinality - the minimum of cardinality to define the row count limit.

○ max_limit_cardinality - the maximum of cardinality to define the row count limit.

MIN(MAX(mistrust_factor * cardinality, min_limit_cardinality), max_limit_cardinality)

EXAMPLES & TESTING RESULTSEXTENSION IMPLEMENTATION
54

2025

3. Extension Implementation

55

The Implementation of Switch Join Via The Custom Nodes

🔧 Custom Nodes are user-defined planner or executor nodes that can be

seamlessly integrated into PostgreSQL’s query processing pipeline.

Main components:

● Manage multiple subpaths or child nodes as part of their execution logic.

● Use only the planner hook (set_rel_pathlist_hook).

Switch Join is implemented using this mechanism

EXTENSION IMPLEMENTATION EXAMPLES & TESTING RESULTS
56

The Implementation of Switch Join Via The Custom Nodes

ABOUT SWITCH JOIN EXAMPLES & TESTING RESULTS

Overview of Custom Node:
● CustomPath

○ CreateCustomPlan - uses to define the function of creation the query plan with Switch Join

● CustomScanMethods

○ CreateCustomScanState - uses to define the function of formation Switch Join PlanState

● CustomExecMethods

○ BeginCustomScan - uses to initialize the Custom node before executing it.

○ ExecCustomScan - uses to form the logic of the switching process of Switch Join.

○ EndCustomScan - uses to pass through all the nodes and call the End() routine

○ ReScanCustomScan - uses to rescan nodes within Custom nodes

○ ExplainCustomScan - display useful information about Switch Join (like the row count limit)
57

2025

4. Benchmarks

58

TPC-H Benchmark

59

TPC-H Benchmark
● Designed by the Transaction Processing Performance Council (TPC).

● Simulates real-world business-oriented ad hoc queries and complex data analysis

workloads.

● Includes 22 complex SQL queries.

● Tests performance of query execution, indexing, joins, and optimization strategies.

● Operates on a relational database with several large tables (e.g., lineitem, orders,

customer).

🎯 The testing results are available at

https://github.com/Alena0704/TPC-H-test
EXAMPLES & TESTING RESULTS CONCLUSION

60

https://github.com/Alena0704/TPC-H-test

TPC-H Benchmark

61

statement_timeout = 30 minutes (triggered on queries 9.sql and 22.sql)

TPC-H: 22.sql
select cntrycode, count(*) as numcust, sum(c_acctbal) as totacctbal

from (select substring(c_phone from 1 for 2) as cntrycode, c_acctbal

from customer

where substring(c_phone from 1 for 2) in

('13', '31', '23', '29', '30', '18', '17')

and c_acctbal > (

select avg(c_acctbal) from customer

where c_acctbal > 0.00

and substring(c_phone from 1 for 2) in

('13', '31', '23', '29', '30', '18', '17'))

and not exists (select * from orders where o_custkey = c_custkey)) as

custsale group by cntrycode order by cntrycode LIMIT 1;

EXAMPLES & TESTING RESULTS CONCLUSION
62

TPC-H: 22.sql: The Main Problem

This could be fixed by calculating all InitPlan's before planning the main query

The cardinality of a subquery
cannot be predicted

63

TPC-H: 22.sql: The Main Problem

This could be fixed by calculating all InitPlan's before planning the main query

The cardinality of a subquery
cannot be predicted

64
Underestimation

TPC-H: 9.sql
select nation, o_year, sum(amount) as sum_profit

from (select n_name as nation, extract(year from o_orderdate) as o_year,

l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount

from part, supplier, lineitem, partsupp, orders, nation

where s_suppkey = l_suppkey and

ps_suppkey = l_suppkey and ps_partkey = l_partkey

and p_partkey = l_partkey and o_orderkey = l_orderkey

and s_nationkey = n_nationkey and p_name like '%green%') as profit

group by nation, o_year

order by nation, o_year desc

LIMIT 1;

EXAMPLES & TESTING RESULTS CONCLUSION
65

TPC-H: 9.sql: The Main Problem

EXAMPLES & TESTING RESULTS CONCLUSION
66

A combination of fields (Suppkey, Partkey) represents a single interconnected entity.

The planner estimates their selectivity by multiplying independent probabilities.

The main problem

TPC-H: 9.sql: The Main Problem

EXAMPLES & TESTING RESULTS CONCLUSION
67

The main problem

The planner chooses
incorrectly Nested Loop to
execute 16_000_000 rows

A combination of fields (Suppkey, Partkey) represents a single interconnected entity.

The planner estimates their selectivity by multiplying independent probabilities.

TPC-H: 9.sql: The Solution With Switch Join

The main problem

68

Switch Join contains two algorithms: Nested Loop and Hash Join + Sort

After considering 100 rows it switches to Hash Join.

TPC-H: 9.sql: The Solution With Extended Statistics
🔧 Solution: Add Extended Statistics (Distinct):

l_suppkey, l_partkey and ps_suppkey, ps_partkey

EXAMPLES & TESTING RESULTS CONCLUSION

69
EXAMPLES & TESTING RESULTS CONCLUSION

The main problem

TPC-H: 9.sql: The Solution With Switch Join

70

Switch Join contains Hash Join node

After observing 100 tuples it switches node from Nested Loop to Hash Join

Join Order Benchmark

71

Join Order Benchmark (JOB)
● set of 113 queries
● every query has from 3 to 16 joins
● the queries answer the logical questions of a movie lover
● queries are difficult for the optimizer due to the large number of joins and

correlations

🎯 The testing results are available at
 https://github.com/Alena0704/jo-bench/tree/switch_join_test

EXAMPLES & TESTING RESULTS CONCLUSION
72

https://github.com/Alena0704/jo-bench/tree/switch_join_test

Hypotheses

● Using multiple Switch Joins can give noticeable overhead
● Using one Switch Join can give lower overhead but at the same time give less

effect

🎯 The testing results are available at
 https://github.com/Alena0704/jo-bench/tree/switch_join_test

EXAMPLES & TESTING RESULTS CONCLUSION
73

Switch Join

Nested Loop

Switch Join

Nested Loop

❗ Check the row count limit

❗ Overhead!

❗ Check the row count limit

https://github.com/Alena0704/jo-bench/tree/switch_join_test

JOB: Without Limitations. 14b.sql

EXAMPLES & TESTING RESULTS CONCLUSION
74

JOB: Results
Several Switch Join were generated in the query plans

Some queries work slower because of overhead

75

JOB: One Switch Join
Allow using only one Switch Join in the query plan
Some queries work a bit faster because of less overhead but they execute longer

76

Is It Possible To Find a Compromise?

It’s necessary because the optimizer tends to choose a Nested Loop when:

● Cardinality prediction failure

● Many conditions

● Function use

❗ Switch Join helps mitigate these risks.

❗ Underestimation cardinality

EXAMPLES & TESTING RESULTS CONCLUSION
77

Summary

● In the absence of restrictions on creating a Switch Join in the query plan,
additional overhead may occur.

● When the query plan contains only a single Switch Join, the impact and
associated overhead are relatively minor.

● However, there are scenarios where multiple Switch Joins are necessary -
particularly when the planner cannot rely on statistics to accurately estimate
cardinality.

CONCLUSION
78

2025

4. Conclusion and development

79

Conclusion

● Switch Join can be an effective approach to mitigate risks caused by suboptimal

plan choices.

● Switch Join introduces overhead and cannot be applied blindly — it should be guided

by a smart decision strategy.

Where can it be found?

● Switch join is not open source and may only be available in PostgresPro Standard (in

August)

● The docker container (alena0704/switch_join) (PostgreSQL 17).

CONCLUSION
80

https://postgrespro.com/products/download
https://hub.docker.com/r/alena0704/switch_join

Next Steps for Switch Join

● Develop parallel execution support

● Implement parameterization support

● Develop a more sophisticated approach to determine row count thresholds,

including cost-based and empirical methods

● Explore the construction of alternative algorithm switching strategies, such as:

○ Hash Join -> Nested Loop

○ Index Scan -> Seq Scan

CONCLUSION
81

2025

Thank You for Your Attention!

Speaker: Alena Rybakina

LinkedIn:

https://www.linkedin.com/in/alena-rybakina

Authors:

Idea: Andrei Lepikhov

Implementation: Alena Rybakina <a.rybakina@postgrespro.ru>,

 Andrei Lepikhov<lepihov@gmail.com>
82

mailto:a.rybakina@postgrespro.ru
mailto:lepihov@gmail.com

